A physics-based approach of deep interseismic creep for viscoelastic strike-slip earthquake cycle models

Lucile Bruhat 1,2

1Department of Geophysics, Stanford University, Stanford, CA 94305, USA. E-mail: lbruhat@stanford.edu
2Now at Laboratoire de Géologie, Ecole normale supérieure, PSL Research University, CNRS UMR 8538, 24 rue Lhomond, 75005 Paris, France

SUMMARY
Most geodetic inversions of surface deformation rates consider the depth distribution of interseismic fault slip-rate to be time invariant. However, some numerical simulations show downdip penetration of dynamic rupture into regions with velocity-strengthening friction, with subsequent updip propagation of the locked-to-creeping transition. Recently, Bruhat and Segall developed a new method to characterize interseismic slip rates, that allows slip to penetrate up dip into the locked region. This simple model considered deep interseismic slip as a crack loaded at its downdip end, and provided analytical expressions for stress drop within the crack, slip and slip rate along the fault. This study extends this approach to strike-slip fault environments, and includes coupling of creep to viscoelastic flow in the lower crust and upper mantle. I use this model to investigate interseismic deformation rates along the Carrizo Plain section of the San Andreas fault. This study reviews possible models, elastic and viscoelastic, for fitting horizontal surface rates. Using this updated approach, I develop a physics-based solution for deep interseismic creep which accounts for possible slow vertical propagation, and investigate how it improves the fit of the horizontal deformation rates in the Carrizo Plain region. I found solutions for fitting the surface deformation rates that allow for reasonable estimates for earthquake rupture depth and coseismic displacement and improves the overall fit to the data. Best-fitting solutions present half-space relaxation time around 70 yr, and very low propagation speeds, less than a metre per year, suggesting a lack of creep propagation.

Key words: Creep and deformation; Seismic cycle; Transient deformation; Continental tectonics: strike-slip and transform; Dynamics and mechanics of faulting; Mechanics, theory, and modelling.

1 INTRODUCTION
The earliest models for interseismic deformation described a fault as a single screw dislocation in an elastic half-space, locked to some depth, but slipping at constant rate below (Savage & Burford 1970). Using this simplified model, kinematic inversions of geodetic surface rates have, for decades, been used to estimate the locking depth, presumed to delimit the depth extent of the seismogenic region.

The screw dislocation model lacks physical realism, as shown by the infinite stress concentrations at the dislocation tip. The need for more realistic models called for transitional regions between the fully locked fault and the freely creeping regions. These transitional regions involve some smoothing of the locked to creeping slip distribution, needed to mitigate the stress singularity. As a result, many inversions for interseismic slip rate include some smoothing, or simply add a linear transition from locked to creeping fault (e.g. Flück et al. 1997), whether or not the approach removes the stress singularity. Still, little is known about the physical characteristics of these transitional regions.

A better understanding of the mechanics of the locked-to-creeping transition is even more critical when we consider that the slip-rate distribution might not be stationary in time. While nearly all kinematic inversions of interseismic surface rates make this assumption there is no reason to believe a priori that this is true. Indeed, fully dynamic simulations of earthquake cycles predict that locked-to-creeping transition might evolve significantly during the earthquake cycle. Enhanced dynamic weakening behaviour in the velocity-strengthening region can allow dynamic rupture to propagate into the locked-to-creeping transition following the earthquake (Jiang & Lapusta 2016). This behaviour had already been observed in conventional rate-state models, where upward penetration of the locked-to-creeping transition occurs over lengths that scale with critical nucleation dimensions (e.g. Hetland et al. 2010; Hetland & Simons 2010; Segall & Bradley 2012; Jiang & Lapusta 2016).
The detection of transient slip behaviour during the interseismic cycle, such as slow slip events (Dragert 2001; Obara 2002) or decadal-scale transient events (Mavrommatis et al. 2014), also demonstrates that a time-invariant interseismic slip-rate distribution is not appropriate. Numerical modelling to reproduce such transient events often exhibit changes in locked-to-creeping transition during the earthquake cycle. This possibility of time-dependent slip due to shrinkage of asperities was pointed as early as Seno (2003). Simulations for slow slip events using quasi-dynamic simulations with thermal pressurization have confirmed that, between large earthquakes, the region of slow slip events gradually propagate into the locked zone (Segall & Bradley 2012). More recently, Johnson et al. (2016) showed that the canonical frictional model with locked asperities of fixed size was inconsistent with GPS-derived deformation in northern Japan. To address this issue, they suggested that locked asperities shrink under surrounding creep during the interseismic period (Mavrommatis et al. 2017). Given the presence of such time-dependent slip events, it appears difficult to support the standard definition of a fixed locked-to-creeping transition.

Bruhat & Segall (2017) recently developed a new method to characterize interseismic slip rates, that allows slip to penetrate up dip into the locked region. This simple model considers deep interseismic slip as a crack loaded at constant slip rate at the updip end. It provides analytical expressions for stress drop within the crack, slip, and slip rate along the fault. These expressions allow the expansion of any non-singular slip rate distribution in a combination of Chebyshev polynomials. The simplicity of the method enables inversions for physical characteristics of the fault interface, establishing a first step to bridge from purely kinematic inversions to physics-based numerical simulations of earthquake cycles. When applied to observed deformation rates in northern Cascadia, best-fitting models reveal a new class of solutions, where the locking depth migrates updip with time. Best-fitting models there are consistent with a very slow updip propagation, between 30 and 120 m yr\(^{-1}\) along the fault.

In this study, I apply this model of propagating deep interseismic creep to strike-slip faults. Unlike Bruhat & Segall (2017), which considered creep propagation in a fully elastic medium, I include here the long-term deformation due to viscoelastic flow in the lower crust and upper mantle. The surface predictions greatly change when including potential viscoelastic deformation and cumulative effect of previous earthquake cycles. Purely elastic models tend to have locking depths greater than the depth of seismicity. Including viscoelastic effects (e.g. Savage & Prescott 1978; Johnson & Segall 2004) allows reasonable fits to interseismic deformation rates with shallower locking depths (e.g. Segall 2010, section 12.4.2). Obviously, physically motivated models have recently been developed (e.g. Takeuchi & Fialko 2012; Hearn & Thatcher 2015; Lambert & Barbot 2016; Allison & Dunham 2018; Zhang & Sagiya 2018) but are still rare and computationally expensive. I present here a simple method to run quickly kinematic inversions, especially in a Bayesian framework, that provides a better physical description of deep interseismic creep.

1 Test this new approach by investigating the interseismic deformation rates along the Carrizo Plain section of the San Andreas fault. The choice for this fault section is twofold. The model I develop is 2-D antiplane strain (infinitely long along strike), so I choose a relatively straight and simple part of a major strike-slip system. The Carrizo Plain section also motivated work by Jiang & Lapusta (2016) on migrating locking depth. To justify the lack of microseismicity, they suggested that the last event on this section, the M\(_w\) 7.9 Fort Tejon earthquake in 1857, could have propagated into the velocity-strengthening region beneath the nominally seismogenic zone. Even 162 yr after the last earthquake the stress concentration due to gradients in slip-rate could still be below the region where earthquakes can nucleate.

This study reviews possible models, elastic and viscoelastic, for fitting horizontal surface rates. I improve the model presented in Bruhat & Segall (2017) to account for the coupling between fault creep and viscoelastic flow. Using this updated approach, I develop a physics-based solution for deep interseismic creep that accounts for possible slow vertical propagation, and investigate how it improves the fit horizontal deformation rates for the Carrizo Plain section of the San Andreas fault.

2 METHODS

In this section, I describe the method I develop to compute interseismic deformation rates from viscoelastic earthquake cycle model including updip propagation of deep interseismic creep. Surface velocities \(v_{\text{horz}}\) result from (1) cumulative effect of viscoelastic earthquake cycle \(v_{\text{EQcycle}}\) and (2) the elastic and viscoelastic responses due to interseismic creep, respectively \(v_{\text{velcreep}}\) and \(v_{\text{vcreep}}\):

\[
v_{\text{horz}} = v_{\text{EQcycle}} + v_{\text{velcreep}} + v_{\text{vcreep}} + \alpha + \epsilon
\]

with \(\epsilon \sim N(0, \Sigma)\).

where \(\Sigma\) is the data covariance matrix and \(\alpha\) a parameter that accounts for the difference in reference frames for the fault model (antisymmetric about the fault) and the measured velocities.

2.1 Viscoelastic earthquake cycle model

I first consider the contribution from repeated coseismic slip. Consider a strike-slip fault embedded in an elastic layer of thickness \(H\), overlying a Maxwell viscoelastic half-space (Fig. 1). The fault is here considered infinitely long along strike, that is it has no along-strike variation. Every \(T\) years, an earthquake partly ruptures the fault section. To keep pace with the far-field motion, maximum coseismic displacement is \(\Delta u = T v^\infty\), where \(v^\infty\) is the long-term plate rate.

Following Savage & Prescott (1978) and Segall (2010, sections 6.3 and 12.4.1), I consider the cumulative effect of \(K\) regularly spaced earthquakes at \(t_n = -kT\), for \(k = 0, 1, \ldots, K\). The surface velocity \(v_i\) due to coseismic slip \(\delta_i\) between \(z_i\) and \(z_{i+1}\) is then given by:

\[
v_i(x, t) = \frac{\delta_i}{\pi t_R} e^{-t/t_R} \sum_{n=1}^{\infty} G_n(x, z_i, H) \frac{(n-1)!}{n!} e^{-kT/n} \left(\frac{t + kT}{t_R} \right)^{n-1},
\]

where \(t\) is the time since the last earthquake. Positive is for right-lateral strike slip faults. The Maxwell relaxation time \(t_R\) of the viscoelastic medium is given by \(t_R = 2\eta/\mu\), where \(\eta\) is viscosity and \(\mu\) shear modulus. \(G_n\) are spatial operators defined by:

\[
G_n(x, z_i, H) = F_n(x, z_i+1, H) - F_n(x, z_i, H),
\]

where \(F_n(x, z_i, H) = \tan^{-1}\left(\frac{2nH - z_i}{x} \right) - \tan^{-1}\left(\frac{2nH + z_i}{x} \right)\).
where c_i are the coefficients of the Chebyshev polynomials, and ξ the spatial variable such that $\xi \in [-1, 1]$. ξ is defined as $\xi = 1 - 2z/a$ such that $z \in [0, a]$ and the lower crack end $z = 0$ is fixed during crack growth. General expressions for stress drop, slip and slip rate distributions for any c_i are given in Appendix B.

For a non-singular crack driven at steady displacement, Bruhat & Segall (2017) derived values of the coefficients c_i for $i = 0, 1$. Due to the large number of unknowns already considered in the viscoelastic modelling, I will limit the number of additional parameters to invert from the crack models. In the following inversions, I restrict analysis to the simplest case where for all $i > 1$, $c_i = 0$ and $\partial c_i/\partial t = 0$. This simplification leads to the following stress drop, slip and slip rate distributions:

$$\Delta \tau(\xi, t) = \frac{2}{\pi} \frac{\delta^\infty(t)(\xi)}{a(t)}$$

$$\frac{d\Delta \tau}{dt}(\xi, t) = \frac{2}{\pi} \frac{1}{a(t)} \left[\delta^\infty(t)(\xi) + \frac{\partial \delta^\infty(t)}{\partial t} (1 - 2\xi) \right]$$

$$s(\xi, t) = \frac{\delta^\infty(t)}{\pi} \left[\xi \sqrt{1 - \xi^2} + \arcsin(\xi) + \frac{\pi}{2} \right]$$

$$\frac{ds}{dt}(\xi, t) = \frac{\delta^\infty(t)}{\pi} \left[\xi \sqrt{1 - \xi^2} + \arcsin(\xi) + \frac{\pi}{2} \right] + \frac{\partial \delta^\infty(t)}{\partial t} (1 - \xi) \sqrt{1 - \xi^2}.$$

Bruhat & Segall (2017) set the bottom displacement condition to be that the crack was loaded at constant creep rate v^∞. Here I present general expressions that describe displacement and velocity conditions as $\delta^\infty(t)$ and $\delta^\infty(t)$, which are time-dependent boundary conditions coupled to the top of the viscoelastic medium. The slip and slip-rate boundary conditions reflect the transient viscoelastic response of the mantle. Assuming that the crack started propagating after the last major earthquake, I compute $\delta^\infty(t)$ and $\delta^\infty(t)$ to account for viscoelastic flow during this time interval. Details of the derivation of these time-dependent boundary conditions are given in Appendix C.

I use here the simplest description of the crack described in Bruhat & Segall (2017), where the stress drop distribution is linear through the crack. I could, however, increase the number of coefficients in the Chebyshev expansion to fit specific frictional properties. For instance, the creeping region could easily reproduce the slip and slip rate distributions of a region that exhibits steady velocity-strengthening. Estimates of analogous rate-state parameters, such as $a - b$, or D_c, could be inverted this way. This is out of scope for this paper, but could be used as a comparison tool for more elaborated fully numerical earthquake models.

Eq. (6d) provides an expression for slip rate along the fault. To compute elastic surface rates caused by deep interseismic creep on a fault length Λ, I combine these expressions with homogeneous half-space Green’s functions G:

$$V_{\text{elprevp}}(x, t) = \int_\Lambda G(x, \xi) s(\xi, t) d\xi.$$

I discretize the fault Λ in segments z_i and z_{i+1} for $i = 1, \ldots, N$ such that the above expression can be approximated as discrete:

$$V_{\text{elprevp}}(x, t) \sim G s.$$

2.3 Viscoelastic response from time-varying interseismic creep

In this section, I develop a method to compute analytically the viscoelastic response due to time-varying slip rates below the fully locked region. Consider $s(\xi, t)$ the slip rate distribution along the fault within the region defined between the depth extent of full earthquake rupture D and the top of the viscoelastic layer H. Following Savage & Prescott (1978) and Segall (2010, section 12.4.1), the viscoelastic response associated with creep $s(\xi, t)$ at depth z_i, can be written as an infinite sequence of repeating slip events at times t extending from...
Now consider that the slip rate distribution $\dot{s}(t)$ can be expressed as the sum of the long-term plate motion rate and a time-dependent term. For simplicity, I assume here that prior to the most recent earthquake, that is $t < 0$, creep occurred at constant rate, and that only during the current earthquake cycle, creep is time dependent:

$$\dot{s}(t) = \begin{cases} v^\infty + \Delta \dot{s}(t) & \text{when } t \geq 0 \\ v^\infty & \text{when } t < 0 \end{cases}$$

The steady part v^∞ applies to all past earthquake cycles, whereas the time-dependent term corresponds to the present cycle. Substituting this expression into eq. (9) gives:

$$\tilde{u}_i(x, t) = \frac{1}{\pi} \sum_{n=1}^{\infty} G_n(x, z_i, H) \left(\frac{1}{(n-1)!} \right) \times \int_{-\infty}^{t} \Delta \dot{s}(t') e^{-\gamma (t-t')/t_R} \left(\frac{t-t'}{t_R} \right)^{n-1} dt' \quad (10)$$

This equation describes the cumulative solution of constant creep at speed v^∞ from Savage & Prescott (1978). The integral can be rewritten as the Gamma function $\Gamma(n)$, which for integer values of n becomes $(n-1)!$. Eq. (12) yields:

$$\tilde{u}_i(x, t) = \frac{1}{\pi} \sum_{n=1}^{\infty} G_n(x, z_i, H) \left(v^\infty + \frac{1}{(n-1)!} \right) \times \int_{-\infty}^{t} \Delta \dot{s}(t') e^{-\gamma (t-t')/t_R} \left(\frac{t-t'}{t_R} \right)^{n-1} dt'$$

Because the time-dependent term $\Delta \dot{s}(t')$ is non-zero only during the current cycle, $\Delta \dot{s}(t') = 0$ when $t < 0$, leading to:

$$\tilde{u}_i(x, t) = \frac{1}{\pi} \sum_{n=1}^{\infty} G_n(x, z_i, H) \left(v^\infty + \frac{1}{(n-1)!} \right) \times \int_{0}^{t} \Delta \dot{s}(t') e^{-\gamma (t-t')/t_R} \left(\frac{t-t'}{t_R} \right)^{n-1} dt'$$

Eq. (14) gives the cumulative effect of viscoelastic flow due to time dependent creep. The first term accounts for constant creep in the region limited by z_i and z_{i+1}. The integral in the second term is calculated numerically. This model is verified against results from Johnson & Segall (2004) who computed slip and slip rate within the creeping region using a boundary element approach (details are given in Appendix D). This method reproduces adequately the results from Johnson et al. (2014) except when considering the very early part of the earthquake cycle. The difference originates from Johnson et al. (2014)’s modelling of post-seismic deformation. Their model has slip within the creeping region instantaneously after the earthquake in order to match the stress boundary condition, a condition not present in the current formulation. As a result, this method is not appropriate for modelling afterslip at an early stage of the earthquake cycle. As I intend to study interseismic deformation that is well past the short-term post-seismic processes, I conclude that this method is adequate to reproduce viscoelastic response induced by time-dependent creep.

3 APPLICATION TO THE CARRIZO PLAIN SEGMENT OF THE SAN ANDREAS FAULT

The previous section developed an improved description of deep interseismic creep that includes the earthquake cycle and response from viscoelastic flow. I now apply this method to investigate geodetic surface velocities across the Carrizo Plain segment of the San Andreas fault.

3.1 Deformation rates

This study considers horizontal interseismic rates in Central California provided by the SCEC Crustal Motion Model Map 4.0 published in Shen et al. (2011). Displacements and velocities were computed from a combination of EDM, GPS and VLBI data. Stations perpendicular to the Carrizo Plain section of the San Andreas fault are then selected (Fig. 3). I exclude stations in the Central Valley to avoid displacements perturbed by the agricultural industry. I finally project the horizontal rates onto a line perpendicular to the fault to obtain a 1-D profile of interseismic deformation.

Because this section of the San Andreas fault is too short to fully represent an infinitely long fault, I must account for 3-D effects. I use the kinematic block models developed by Johnson (2013) to compute 2-D synthetic data along a line perpendicular to the Carrizo Plain section of the San Andreas fault. This model considers the entire extent of the San Andreas fault in Central and Southern California. For this correction only, I assume the San Andreas fault locked to 19 km depth (Smith-Kanter et al. 2011) and fully creeping in the northern creeping section. From the surface velocities due to an infinitely long fault also locked to 19 km, I compute the difference between the 1-D and the 2-D models; these are considered as a
correction for 3-D effects, as described in detail in Appendix E. This leads to a correction of approximately 1 mm yr\(^{-1}\), and not symmetric across the fault trace (see Fig. E1).

Finally, I correct the data set for the effect of the right-lateral Hosgri fault. This fault system located at the southwestern extent of the considered section presents measured current interseismic deformation. As distant deformation rates strongly affect the fit in a viscoelastic inversion, I correct for the effect of the Hosgri fault. I use results from Johnson & Watt (2012) & Johnson et al. (2014) that indicate a lateral slip rate of 2.6 ± 0.9 mm yr\(^{-1}\), considered as a minimum rate for the Hosgri fault given the presence of an active western strand. I take a locking depth of 12 km from Hardebeck (2010) used in UCERF 3 modelling [see Appendix A from UCERF 3 report (Field et al. 2014)]. The corrected data are displayed in Fig. 3.

3.2 Current knowledge of fault coupling and earthquake characteristics

Paleoseismic studies provide constraints on the surface coseismic slip. Although earliest measurements suggested surface displacements up to 10 m along the Carrizo Plain segment (Sieh 1978), these estimates have been reevaluated since to lower estimates, around 5–7 m (Zielke et al. 2010; Scharer et al. 2014). In this study, I impose
Johnson (2013) found that slip rates range from 29 to 37 mm yr$^{-1}$ for four kinematic models, some of them including viscoelastic flow. More recently, using a suite of inversions with bound for the Carrizo segment of the San Andreas Fault. In this study, I consider that a reasonable estimate on the locking depth of the San Andreas fault to define the thickness of the seismogenic layer. Across the Carrizo Plain segment, microseismicity is first estimated to extend down to 14–16 km. Using the SCSN relocated earthquake catalog for Southern California, downloaded from http://scedc.caltech.edu/research-tools/alt-2011-dd-hauksson-yang-shearer.html (Lin et al. 2007; Hauksson et al. 2012), most of the seismicity is located at depths 8–12 km, but extends to as much as 18 km. This helps constrain reasonable upper bounds on the elastic thickness H and the current locking depth.

3.3 Slip rate inversions

In this section, I describe the inversions that will be carried out in the next section. Surface velocities v_{horz} results from the cumulative effect of viscoelastic earthquake cycle v_{EQcycle}, and the elastic and viscoelastic responses due to interseismic creep, respectively v_{creep} and v_{vecreep}:

$$v_{\text{horz}} = f(H, D, t_R, \Delta u, v_\infty, d, v_{up}, t_{\text{ESP}}, \alpha),$$

$$= v_{\text{EQcycle}} + v_{\text{creep}} + v_{\text{vecreep}} + \alpha + \epsilon \quad \text{with} \quad \epsilon \sim \mathcal{N}(0, \Sigma),$$

where Σ is the data covariance matrix and α a parameter that accounts for reference frame offset. Equations for v_{EQcycle} are given in Section 2.1. v_{creep} relates to the unknown vector of slip-rates δ via elastic homogeneous half-space Green’s functions G. Equations for the viscoelastic response v_{vecreep} are given in Section 2.3 using expressions for interseismic slip rates given in Section 2.2. Inversions search for the elastic thickness H, the rupture depth D, the present-day position of the locking depth, defined by the top of the creeping region d, the long-term plate motion rate v_∞, the viscoelastic relaxation time t_R, and the maximum coseismic displacement Δu, related to the earthquake recurrence time T. To account for the possibility of a region of constant creep at the transition between the elastic and the viscoelastic region, I invert for the bottom depth of the creeping region H_{creep} (see Fig. 1). Between H_{creep} and H, the fault slips at the constant speed δ_∞ defined in Section 2.2.
Finally, in order to be consistent with microseismicity data, I will consider solutions whose peak in stress rate lies in the same region as the current seismicity (between 8 and 13 km). This is an important point in this inversion. This updated model allow us to derive the distribution of shear stress rate within the creeping region. While this inversion is directed by horizontal geodetic rates, I assume that the highest rate should coincide with the location of maximum shear stressing rate, which is indicated by the region of largest moment release from the microseismicity.

The coseismic slip distribution is defined as followed. From the surface to the full rupture depth \(D \), the coseismic slip distribution is equal to the maximum coseismic displacement \(\Delta u \). To ensure that at the end of the cycle, slip along the entire fault is equal to the maximum coseismic displacement, the coseismic slip distribution between \(D \) and \(H_{\text{creep}} \) is defined as the complement of the aseismic slip distribution at the end of the cycle (see Fig. 1). In other words, I not only integrate up to the current time, but also to the end of the cycle, \(T = \Delta u/v^\infty \). Likewise, I bound the migration speed \(v_{\text{up}} \) such that slip in the elastic region is equal to \(\Delta u \) at the end of the cycle.

The creeping region must reach the downdip limit of the coseismic region at the end of the earthquake cycle:

\[
v_{\text{up}} = \frac{d - D}{T - 162}.
\]

This study aims at developing inverse methods to test different models of interseismic deformation, accounting in some cases for propagating deep creep. Since I consider viscoelastic deformation, I estimate at least the rupture depth \(D \), the elastic thickness \(H \), the viscoelastic relaxation time \(t_R \), the coseismic displacement \(\Delta u \), the long-term plate motion rate \(v^\infty \) and \(\alpha \). When considering models with propagating deep interseismic slip, I also invert for the locking depth \(d \) and deduce the propagation speed \(v_{\text{up}} \). I use Markov Chain Monte Carlo (MCMC) methods for the inversions. MCMC algorithms efficiently estimate the maximum-likelihood solution and enable the construction of posterior distributions. I assume that the loading time \(t \) that appears in eq. (6) is fixed at 162 yr, since the last earthquake occurred in 1857. Depending the inversions, prior knowledge about the other model parameters will be included. A priori bounds are summarized in Table 1.

Table 1. A priori bounds for MCMC inversions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum depth of full earthquake rupture (km)</td>
<td>(D)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Long-term fault slip rate (mm yr(^{-1}))</td>
<td>(v^\infty)</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>Elastic thickness (km)</td>
<td>(H)</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>Half-space relaxation time (yr)</td>
<td>(t_R)</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>Coseismic displacement ((m))</td>
<td>(\Delta u)</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Present-day locking depth (km)</td>
<td>(d)</td>
<td>(D)</td>
<td>(H)</td>
</tr>
<tr>
<td>Depth of constant creep (km)</td>
<td>(H_{\text{creep}})</td>
<td>(d)</td>
<td>(H)</td>
</tr>
<tr>
<td>Recurrence time (m yr(^{-1}))</td>
<td>(T)</td>
<td>(\Delta u/v^\infty)</td>
<td>(\Delta u/v^\infty)</td>
</tr>
<tr>
<td>Propagation speed (m yr(^{-1}))</td>
<td>(v_{\text{up}})</td>
<td>((d-D)/(T-162))</td>
<td>((d-D)/(T-162))</td>
</tr>
<tr>
<td>Time since 1857 earthquake (yr)</td>
<td>(t)</td>
<td>162</td>
<td>162 (fixed)</td>
</tr>
<tr>
<td>Block motion (mm yr(^{-1}))</td>
<td>(\alpha)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

4 RESULTS

In this section, I present the results of this inversions to fit geodetic rates across the Carrizo Plain section of the San Andreas. I first found best-fitting solutions for classical inversions that consider either the fault to be a single dislocation in a fully elastic medium, or models that include a region of steady creep above a viscoelastic region. I also consider solutions from the boundary element method developed by Johnson & Segall (2004). I finally apply the method I developed including propagating deep interseismic creep. Different creep models are sketched in Fig. 4.

Inversions details are summarized in Table 2, and best-fitting parameters and confidence intervals are given in Table 3. Recall that due to the skewness of some posterior distributions, the best-fitting solution might not lies within the 95 per cent confidence interval. The results of the inversions are summarized in Fig. 5. The posterior distributions of the full rupture depth \(D \), the elastic thickness \(H \), the coseismic displacement \(\Delta u \), the relaxation time \(t_R \), the recurrence time \(T \), the locking depth \(d \), and propagation speed \(v_{\text{up}} \) are displayed for the four inversions. Best fits and log-likelihood distributions are shown in Fig. 6.

I first perform classical inversions to explain the deformation rates across the Carrizo Plain segment. Best-fitting parameters will provide insights on expected fault parameters inferred from this set of data, before launching more complicated inversions. I first consider a single dislocation within an elastic medium \((d = D)\). Because I only invert for the maximum depth of uniform coseismic slip and long-term velocity in this model, resulting distribution are only shown for the depth \(D \). The inverted locking depth is 10 km and long-term plate rate \(v^\infty \) 30.1 mm yr\(^{-1}\).

The remaining inversions consider the fault to be embedded in an elastic layer lying over a viscoelastic medium. Inverted parameters are the coseismic uniform depth \(D \), elastic thickness \(H \), relaxation time \(t_R \), coseismic displacement \(\Delta u \) and \(v^\infty \). The first inversion considers creep at constant velocity \(v^\infty \) between \(D \) and \(H \) (as in Savage & Prescott 1978). Best-fitting solutions indicate rupture depth of 10 km and elastic thickness of 18 km. Maximum coseismic displacement reaches 8 m. This model favours a short relaxation time, of around 39.2–55 yr. Recurrence time \(T \) ranges from 216.8 to 226.5 yr. The second inversion assumes the creeping region to slip at constant resistive stress. This is the model developed by Johnson & Segall (2004). Best-fitting parameters also reaches 10 km for \(D \) and 8 m for \(\Delta u \). Unlike the previous inversion, this model infers slightly higher values for the elastic thickness \(H \), between 17.6 and 19.4 km, and shorter recurrence time, around 215 yr. The estimated relaxation time \(t_R \) is two or three times higher than the one in the previous inversion.

Finally, I perform the inversion using my model. Uniform rupture depth is estimated between 9.1 and 10.3 km. Estimates of elastic thickness vary from 17.1 to 21.5 km. Coseismic slip is in the range 6.9–8.3 m. Recurrence time lies between 209 and 221 yr. Current locking depth lies between 9.2 and 10.5 km, colocated at the location of most of the microseismicity. Finally, rates for propagating creep...
Figure 4. Models for interseismic creep considered in this study. Details are summarized in Table 2.

Figure 5. Posterior distributions for the depth of maximum coseismic slip D, the elastic thickness H, the amount of maximum coseismic slip Δu, the half-space relaxation time t_R, the recurrence time T, and, for this model specifically, the distribution of the current locking depth d and propagation speed of deep interseismic slip v_{up}. See Fig. I for a review of the different parameters.

vary between 0 and 8.5 m yr$^{-1}$. The relaxation time of the best-fitting solution lies at 70.2 yr, varying from 48.4 to 111.0. Fig. E2 presents the posterior distributions for parameters estimated in the propagating creep inversion, and the resulting propagation speed.
Deep interseismic creep for viscoelastic earthquake cycle models

Figure 6. Best-fitting models, log-likelihood distributions and corresponding deviance information criteria. Although the difference is small, this propagating creep model fits better the data set compared to other models. Recall that the data were corrected for 3-D effect and the effect of the Hosgri fault.

Table 2. Inversion descriptions.

<table>
<thead>
<tr>
<th>Type</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>Dislocation</td>
<td>Single dislocation in elastic half-space</td>
</tr>
<tr>
<td>Viscoelastic</td>
<td>Constant creep</td>
<td>Model from Savage & Prescott (1978)</td>
</tr>
<tr>
<td></td>
<td>Constant stress</td>
<td>Model from Johnson & Segall (2004)</td>
</tr>
<tr>
<td>Viscoelastic</td>
<td>Propagating creep</td>
<td>Creeping region migrating vertically</td>
</tr>
</tbody>
</table>

Table 3. Inversion results for all the tested models. Parameters with an asterisk are not inverted, but inferred using the relations given in Table 1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dislocation</th>
<th>Constant creep</th>
<th>Constant stress</th>
<th>Propagating creep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameter</td>
<td>Best fit</td>
<td>95% Conf.</td>
<td>Best fit</td>
</tr>
<tr>
<td>D (km)</td>
<td>10.0</td>
<td>9.9–10.0</td>
<td>10.0</td>
<td>9.9–10.0</td>
</tr>
<tr>
<td>v^∞ (mm yr$^{-1}$)</td>
<td>30.1</td>
<td>29.5–30.7</td>
<td>34.7</td>
<td>33.7–36.4</td>
</tr>
<tr>
<td>H (km)</td>
<td>18</td>
<td>17.9–18.2</td>
<td>18.0</td>
<td>17.6–19.4</td>
</tr>
<tr>
<td>t_R (yr)</td>
<td>45.5</td>
<td>39.2–55.0</td>
<td>101.0</td>
<td>99.8–118.4</td>
</tr>
<tr>
<td>Δu (m)</td>
<td>8.0</td>
<td>7.3–8.2</td>
<td>8.0</td>
<td>7.4–8.1</td>
</tr>
<tr>
<td>d (km)</td>
<td>18.2</td>
<td>15.6–21.3</td>
<td>230.5*</td>
<td>216.8–226.5*</td>
</tr>
<tr>
<td>H_{creep} (km)</td>
<td>18.2</td>
<td>15.6–21.3</td>
<td>5.1*</td>
<td>4.1–5.5*</td>
</tr>
<tr>
<td>v_{up} (m yr$^{-1}$)</td>
<td>0.43*</td>
<td>0.0–8.5*</td>
<td>0.43*</td>
<td>0.0–8.5*</td>
</tr>
</tbody>
</table>

I observe a positive correlation between the relaxation time t_R, the elastic thickness H and the depth of constant creep H_{creep}. When focusing on the propagation speed v_{up}, there does not seem to be any strong correlation with the other inversion parameters. The sudden decrease in relaxation time between the model developed by Johnson & Segall (2004) and mine does not seem to be solely related to the addition of the propagating creep.

Although I found differences in parameters between the three viscoelastic earthquake cycle inversions, Fig. 6 shows that the differences in fit are limited. This improved model shows, however, a better range for the likelihood, compared to all other inversions. I also compute the deviance information criterion (DIC) (Spiegelhalter et al. 2002) to compare the fits. The deviance $D(m)$ is defined as

$$D(m) = -2 \log[p(d|m)] + C,$$

where d is the data, m the unknown parameters, $p(y|m)$ the likelihood and C a constant that later cancels. The influence of the effective number of parameters is given by the difference between the expectation of the deviance $\bar{D}(m)$ and the deviance of the expectation of m:

$$p_D = \bar{D}(m) - D(\bar{m}).$$
Figure 7. Distribution of coseismic slip, slip rate, stress rate, D, d and H for this improved model. Median solutions are indicated in bold lines, the 2σ uncertainties are given by the shaded regions. I compare the obtained stress rate distribution to the cumulative moment from microseismicity between 1981 and 2016 along the Carrizo Plain (Lin et al. 2007; Hauksson et al. 2012).

The DIC is then computed as followed:

$$
\text{DIC} = D(\bar{m}) + 2p_D.
\quad (19)
$$

The DIC is a way of measuring model fit, similar to Akaike information criterion (AIC), but for MCMC solutions. Models with lower DIC give the best estimated solutions. In this study, although I increased the number of parameters, my improved model has a DIC lower than all the other inversions, as shown in Fig. 6.

5 DISCUSSION

I investigated models that include viscoelastic flow and deep interseismic creep to explain the deformation rates across the Carrizo Plain section of the San Andreas fault. I improved the method developed by Bruhat & Segall (2017) to account for the coupling between the viscoelastic half-space and time-dependent interseismic creep. I propose a model with a coseismic region with constant coseismic slip down to 10 km, then slowly tapering down to 15–20 km (Fig. 7). The region of uniform coseismic rupture, down to ≈ 10 km is followed by a transitional region, where creep lies between the top of the viscoelastic layer and the apparent locking depth, and potentially can migrate vertically at speeds up to 10 m yr$^{-1}$. This model exhibits positive stress rate within the same region than the current microseismicity. This results show that this model might explain the surface rates across the Carrizo Plain section of the San Andreas fault.

Compared to the model with constant creep from Savage & Prescott (1978) and the boundary element model developed by Johnson & Segall (2004), I present a kinematic model that is much more efficient computationally and allow the spatial migration of the creeping region during the earthquake cycle. I derived analytical expressions for this to compute the viscoelastic response due to time-dependent creep. Although this model remains kinematic, it provides physical insights into the transitional region between the locked region and the top of the viscoelastic medium.

Note that the best-fitting solutions from this model have very low propagation speeds, less than a metre per year, as shown in Fig. 8, advocating for the lack of creep propagation. As a result, the difference in fit with the model developed by Johnson & Segall (2004) where creep occurs at constant creep, does not seem to be caused by the additional creep propagation. The model I developed, independently from the propagation, seems to provide a more flexible solution for creep rate distribution in the transitional region, leading to a systematic better fit.

All prior models assumed constant coseismic displacement along depth, meaning that the earthquake rupture would abruptly stop as it reaches the depth D. A sudden earthquake arrest is however probably unlikely. Most slip inversions assume spatial smoothing between patches of high and low slip for instance. The model I present here includes a more realistic transitional region below the depth of uniform rupture D. It allows the presence of a transitional region where tapered coseismic slip and migrating interseismic creep are colocated. Recent numerical studies have hinted the possibility for such deeper partial coseismic ruptures (Jiang & Lapusta 2016) due to enhanced weakening mechanisms. Although partial rupture add an extra degree of complexity when describing the transition between...
the locked and the creeping regions, such models improve significantly the physical representation of the transitional region and the overall fit, as shown in Fig. 6.

All the considered models assume an instantaneous characteristic rupture every 7 years. Although, the cumulative response of the underneath viscoelastic medium to each characteristic earthquake is acknowledged, most of them neglect time-dependent afterslip and more generally post-seismic deformation. Post-seismic slip could account for a significant part of the slip happening within the creeping region. Only the boundary element model developed by Johnson & Segall (2004) considered instantaneous slip in the region between \(D \) and \(H \), which might be assimilated as a partial deep rupture, but does not evolve with time. As the deep region of the elastic layer slips post-seismically, it also feeds and amplifies the response of the viscoelastic medium. This additional time-dependent behaviour from the post-seismic response is completely ignored in any of this viscoelastic modelling.

The variability of the typical-earthquake characteristics might also affect the long-term viscoelastic cycle model. Although the San Andreas Fault has been quiet in this region since 1857, paleo-seismic studies have shown that most precedent events displayed lower surface-breaking displacements, as well as shorter recurrence time intervals (Akciz et al. 2009, 2010; Scharer et al. 2014). These studies suggest that there is no ‘characteristic’ earthquake along the Carrizo Plain segment, and that, as a result, the 1857 event might be a rare larger event. Note that the corollary would also suggest smaller coseismic displacements in the geodetic medium.

Nevertheless, I developed a model that allows crack propagation that considers the coupling between the viscoelastic half-space and the creeping region. In particular, I extended the models from Bruhat & Segall (2017) to compute viscoelastic surface rates caused by time-dependent slip rates along the fault. Using this improved model, I found solutions for fitting the surface deformation rates that allow for reasonable estimates for earthquake rupture depth and coseismic displacement. Above the viscoelastic half-space, deep interseismic slip might be migrating vertically at rates up to 10 m yr\(^{-1}\), slowly unlocking the deepest region of the elastic crust. I present a model that could be used as a first step to explain the discrepancy between geodetically derived locking depths and microseismic along the San Andreas fault. The observation of deep microseismicity and tremors suggests indeed that there is at least some fault slip well below the nominally locked part of the fault (Nadeau & Guilhem 2009; Shelly 2010). However, since the propagation velocity is very small, less than 1 km in 100 yr, it is highly likely that the creep migration, if real, could not be currently detected given the geodetic data temporal span and the still large uncertainties on the locking depth along the San Andreas fault.

Likewise, I tested this method on a simple data set that used averaged temporal deformation. The addition of a possible time-dependent behaviour calls for the use of time-dependent data, that would highlight the characteristics of migrating speed. Future work should consider the use of additional data sets, such as microseismicity, repeating earthquakes, and tremor locations, to study and better constrain this behaviour in fault systems. As observations of time-dependent deformation during the interseismic period, or even before large events, become more common, this type of inversion method would become more and more necessary.

While this study focused on the Carizzo plain section of the San Andreas fault, the approach could be easily expended to other strike-slip faults. Current work on the North Anatolian fault have shown for instance that the long-term deformation rates seem constant through the interseismic period, which could suggest the lack of migrating creep (Hussain et al. 2018). The study from Jiang & Lapusta (2016), which actually first mentioned the possibility of a migrating locking depth, looked at microseismicity pattern in large strike-slip fault segments to estimate whether the locking depth could have been pushed further at depth after large earthquakes. These locations could serve as starting point for further evaluating deep interseismic creep.

The first and most obvious application of my method is to provide a physics-based tool for kinematic inversions that remains simple to use, but still allows vertical migration of the creeping region in a viscoelastic earthquake cycle modelling. Nonetheless, this method could also be used as a verification tool for more elaborated physics-based fully-numerical modelling. While I recognize that dividing the crust in a elastic medium of constant elastic moduli overlying a viscoelastic half-space remains a simple model that strongly differs with recent physically motivated models (e.g. Takeuchi & Fialko 2012; Hearn & Thatcher 2015; Lambert & Barbot 2016; Allison & Dunham 2018; Zhang & Sagiya 2018), such methods for modelling the crust are still wildly used in kinematic inversions. Results from fully-numerical models should be verified against various approach of kinematic inversions, such as the one developed here. For instance, when Allison & Dunham (2018) finds that even the brittle–ductile transition evolves with cumulative earthquake cycle, it would be really interesting to invert the surface deformation rates they produce with the method I developed here. As screw dislocation arctangents remain still fairly ubiquitous (Meade et al. 2013; Wright et al. 2013), being able to pinpoint the components of interseismic deformation rates to actual physical characteristics using knowledge from both the kinematic inversions and the fully-numerical models would be an encouraging step forward.

ACKNOWLEDGEMENTS

I would like to thank Paul Segall for discussions and guidance through this work, and Kaj Johnson for providing me his viscoelastic code. I also thank the editor Eiichi Fukuyama, Tim

Figure 8. Density plot of the posterior distribution of the creep propagation speed against the log-likelihood. A lower log-likelihood indicates a better fit. In this inversion, while I allow the possibility for vertical migration of the locking depth, the best-fitting solutions converge towards a solution which is not migrating.
REFERENCES

APPENDIX A: VISCOELASTIC STRESSES CAUSED BY REPEATED SLIP IN THE SEISMOGENIC REGION

Stress rates are obtained by computing the strain rates using velocities given in eq. (2) and applying Hooke’s law (Johnson & Segall 2004). Stresses are then derived by integrating over the duration of the time interval T. The expression for stress at the location (x_i, z_i) due to slip δ_i at depth z_i is

$$\sigma_i(x_i, z_i, t) = \delta_i \frac{\mu}{2\pi R_k} \frac{T}{t_k} e^{-t/T} \sum_{n=1}^{\infty} \frac{W_n(x_i, z_i, z_i, H)}{(n-1)!}$$

$$\times \sum_{k=0}^{K} e^{-kT/t_k} \left(\frac{t + kT}{t_k} \right)^{n-1},$$

(A1)

using the spatial operator W_n:

$$W_n(x_i, z_i, z_i, H) = V_n(x_i, z_i, z_i + H) - V_n(x_i, z_i, z_i, H).$$

(A2a)

where

$$V_n(x_i, z_i, z_i, H) = -\frac{z_i - 2nH + z_i}{(z_i - 2nH + z_i)^2 + x_i^2}$$

$$\frac{z_i - 2nH - z_i}{(z_i - 2nH - z_i)^2 + x_i^2} + \frac{z_i + 2nH + z_i}{(z_i + 2nH + z_i)^2 + x_i^2} - \frac{z_i + 2nH - z_i}{(z_i + 2nH - z_i)^2 + x_i^2}.$$

(A2b)

For points on the fault, $x_i = 0$ and V_n simplifies to:

$$V_n(z_i, z_i, H) = -\frac{1}{z_i - 2nH + z_i} + \frac{1}{z_i - 2nH - z_i} + \frac{1}{z_i + 2nH + z_i} - \frac{1}{z_i + 2nH - z_i}.$$

(A3)

APPENDIX B: GENERALIZED EQUATIONS FOR CRACK MODEL

Following Bilby & Eshelby (1968), the stress drop within the crack can be expanded in Chebyshev polynomials of the first kind T_l:

$$\Delta\tau(u) = \mu \sum_{i=0}^{\infty} c_i T_i(u).$$

(B1)

Bruhat & Segall (2017) showed that for a non-singular crack, that is with finite stress at the crack tip and driven by steady displacement δ^∞, $c_0 = 0$ and $c_1 = 2\delta^\infty/a\pi$. This leads to the following expressions for stress drop within the crack and slip:

$$\Delta\tau(\xi, t) = \frac{\mu}{\pi} \frac{\delta^\infty}{a\pi} \xi + \mu \sum_{i=2}^{\infty} c_i T_i(\xi).$$

(B2)

$$s(\xi, t) = \frac{\delta^\infty}{\pi} \left[\xi \sqrt{1 - \xi^2} + \arcsin(\xi) + \frac{\pi}{2} \right]$$

$$+ \frac{a}{2} \sqrt{1 - \xi^2} \sum_{i=2}^{\infty} c_i \left[U_i(\xi) \frac{U_{i-2}(\xi)}{i-1} - U_{i+2}(\xi) \frac{U_{i-1}(\xi)}{i-1} \right].$$

(B3)

where U_i are Chebyshev polynomials of the second kind.

Finally, taking the total derivative of $s(\xi, t)$ to get slip-rate, I find

$$\frac{ds(\xi, t)}{dt} = \frac{a}{2} \sum_{i=2}^{\infty} \frac{c_i}{i - 1} \left[\frac{U_i(\xi)}{i-1} - \frac{U_{i+2}(\xi)}{i-1} \right]$$

$$+ \sum_{i=2}^{\infty} \left[f_i + f_i'(1 - \xi) \right],$$

(B4)

where

$$f_i = \sqrt{1 - \xi^2} \left[\frac{U_i}{i + 1} - \frac{U_{i-2}}{i - 1} \right],$$

(B5a)

$$f_i' = 2\sqrt{1 - \xi^2} U_{i-1},$$

(B5b)

$$g = \frac{1}{\pi} \left[\xi \sqrt{1 - \xi^2} + \arcsin(\xi) + \frac{\pi}{2} \right],$$

(B5c)

$$g' = \frac{2}{\pi} \sqrt{1 - \xi^2}.$$

(B5d)

APPENDIX C: TIME-DEPENDENT DISPLACEMENT CONDITION AT THE DOWNDIP LIMIT OF THE CRACK

Bruhat & Segall (2017) considered that the displacement at the downdip extent of the crack was constant through time, and equals to the long-term rate v^∞. Indeed, they considered a crack in a elastic half-space, loading by constant creep. In this study, due to the presence of a viscoelastic half-space below the elastic crust, the values of this boundary condition for slip and slip rate must match the motion of the viscoelastic half-space, that is an initial loading due to an earthquake on the shallower fault, followed by time-dependent relaxation. I here derive the boundary conditions $\delta^\infty(t)$ and $\delta^\infty(t)$ such that they follow the time-dependent motion of the shallowest point of the viscoelastic half-space.

Following Savage & Prescott (1978) (also given in eqs (12.20)–(12.26) from Segall (e.g. 2010, section 12.4.1), the horizontal velocity at the free surface due to the cumulative effect of cumulative effect of N regularly spaced earthquakes is given by

$$v(x, t) = \frac{1}{\pi} \sum_{n=1}^{N} T_n(t/R_k, T/R_k) F_n(x, D, H).$$

(C1)

where

$$T_n(t/R_k, T/R_k) = \frac{v^\infty}{R_k} \sum_{k=0}^{N} e^{-kT/R_k} \left(\frac{t + kT}{t_k} \right)^{n-1}.$$

(C2)

The time-dependence is then given by the term $T_n(t/R_k, T/R_k)$, where each mode as an exponential character. Savage (1990) noted that the viscoelastic solution given above is mathematically equivalent to fault slip within an elastic half-space in a series of strips at depths H, $3H$, ... below the coseismic region. Since the crack bottom end lies at the upper limit of the viscoelastic medium, the bottom velocity condition $\delta^\infty(t)$ corresponds to the velocity of the viscoelastic region at its upper end. The velocity of this point is then directly given by the summation of T_n as n goes from 1 to infinity.

Savage (1990) also showed that this summation quickly approaches the long-term rate v^∞ with increasing n. Instead of using the full summation, I approximate $\delta^\infty(t)$ by only considering the first two nodes T_n from the previous equation. For a large number of earthquakes N in (C2), $\delta^\infty(t)$ can be rewritten as:
Estimation of viscoelastic deformation induced by time-varying creep when

\[
\delta^\infty(t) = \frac{1}{2} \left[\frac{T_1(t/t_R, T/t_R)}{T_2(t/t_R, T/t_R)} \right]
\]

Finally, I compute the condition \(\delta^\infty(t) \) by numerical integration:

\[
\delta^\infty(t) = \frac{1}{2} \int_0^t \left[\frac{T_1(t/t_R, T/t_R)}{T_2(t/t_R, T/t_R)} \right] dt.
\]

Obviously, I make an approximation of the velocity at the elastic-viscoelastic limit by using the first two nodes of the equivalent slip model from Savage (1990). While this approximation produces the same surface deformation pattern than Savage & Prescott (1978), it does not reproduce the actual internal deformation at the elastic-viscoelastic limit. Because I focus in this study at developing a simple kinematic model that considers time dependent interseismic creep to fit surface rates, this approximation will be enough at this stage of modelling. The time dependency of the new boundary condition is the critical point here, as it will affect the shape of the creeping crack, and the resulting surface deformation pattern.

Appendix D: Evaluation of Creep-Induced Viscoelastic Effects

In this section, I verify the method that I developed in Section 2.3 against previous codes for creep-induced viscoelastic effects. I make use of earthquake cycle models developed by Johnson & Segall (2004) to compute slip-rate profiles for interseismic creep. This model assumes that the region between \(D \) and \(H \) is unlocked, is fixed in length during the interseismic period, and slips at constant resistive shear stress. The solution for slip and slip rate within the creeping region is then computed through a boundary element approach.

First, I use profiles of surface rates and slip rates within the creeping region using the approach from Johnson & Segall (2004) to estimate the portion of surface deformation attributed to creep-induced viscoelastic response. For a given set of input parameters: rupture depth \(D \), elastic thickness \(H \), relaxation time \(t_R \), recurrence time \(T \) and plate motion velocity \(\nu^\infty \), I produce profiles of surface rates and interseismic slip rates. Here I use \(D = 15 \) km, \(H = 30 \) km, \(T = 300 \) yr, \(\nu^\infty = 3 \) cm yr\(^{-1} \). Deformation profiles for two relaxation times \(t_R \) are displayed in Fig. D1. Left-hand panels show profiles for surface rates and slip rates in the creeping region at 10 time intervals during the interseismic period. These profiles are computed using codes from Johnson & Segall (2004). Top middle panel gives surface rates due to periodic earthquake rupturing from the surface to depth \(D \) every \(T \) years. These are computed using analytical solution for earthquake cycle models (as in Segall 2010, section 12.4.2). Bottom middle panel displays elastic deformation rates caused by interseismic creep. These surface rates relate to the slip rates displayed in the bottom left-hand panel via elastic Green’s functions.

Right-hand panels display the viscoelastic deformation as a function of time, and space, due to time-varying slip rate profiles shown in the bottom left-hand panel. These profiles result from the subtraction of the coseismic cycle deformation and the elastic deformation.

![Figure D1](image-url)
caused by creep, both displayed in middle panels, from the original surface deformation shown in the top left-hand panel. Fig. D1 shows that the surface deformation is dominated by the earthquake cycle signal, up to 70 per cent of the signal. The amplitude of the elastic and viscoelastic deformation pattern are roughly similar, each accounting for 10–20 per cent of the total rates. However, note the different evolution, as the elastic deformation decreases both temporally and spatially, while the viscoelastic response reaches an asymptotic trend which increases with distance from the fault. The viscoelastic signal will dominate especially late in the earthquake cycle. Since the viscoelastic effect of interseismic creep is comparable to the elastic part, I cannot neglect the effect of viscoelastic flow in the surface rates.

Now, I compare the viscoelastic response induced by creep from Johnson & Segall (2004) with this model. I use the slip rate profiles of creep from Johnson & Segall (2004), considering 10 time increments, and compute the surface deformation from the viscoelastic response using eq. (14, see Fig. D2). This method reproduces the overall shape and amplitude of the surface rates, especially late in the earthquake cycle. As I only use 10 increments in Johnson & Segall (2004)’s model, which is the number of time increment used in the original paper, I now test the effect of increasing the number of time increments.

Fig. D3 displays the misfit between the surface prediction from Johnson & Segall (2004) and this method (\(d_{\text{crack}}\)) as a function of the time discretization used in the boundary element code and time. The recurrence time is \(T = 300\) yr and \(t_R = T/2\).
APPENDIX E: 3-D EFFECTS

I use the kinematic block model developed by Johnson (2013) to compute 2-D synthetic data along a line perpendicular to the Carrizo Plain section of the San Andreas fault (see Fig. E1). This model considers the entire extent of the San Andreas fault in Central and Southern California. I assume the San Andreas fault locked up to 19 km (Smith-Konter et al. 2011) and fully creeping in the northern creeping section. Using the surface rates due to an infinitely long fault also locked at 19 km, I compute the difference between the 1-D and the 2-D models that I considered as a correction to the surface rates. Corrected data are displayed in Fig. 1.

Figure E1. Estimation of 3-D effects (locking depth is 19 km).
Figure E2. Marginal posterior distributions for parameters estimated in the propagating creep inversion. Best-fitting solution are indicated by the dashed black lines.
Authors are requested to choose key words from the list below to describe their work. The key words will be printed underneath the summary and are useful for readers and researchers. Key words should be separated by a semi-colon and listed in the order that they appear in this list. An article should contain no more than six key words.

COMPOSITION and PHYSICAL PROPERTIES
- Composition and structure of the continental crust
- Composition and structure of the core
- Composition and structure of the mantle
- Composition and structure of the oceanic crust
- Composition of the planets
- Creep and deformation
- Defects
- Elasticity and anelasticity
- Electrical properties
- Equations of state
- Fault zone rheology
- Fracture and flow
- Friction
- High-pressure behaviour
- Magnetic properties
- Microstructure
- Permeability and porosity
- Phase transitions
- Plasticity, diffusion, and creep

GENERAL SUBJECTS
- Core
- Gas and hydrate systems
- Geomechanics
- Geomorphology
- Glaciology
- Heat flow
- Hydrogeophysics
- Hydrology
- Hydrothermal systems
- Infrasound
- Instrumental noise
- Ionosphere/atmosphere interactions
- Ionosphere/magnetosphere interactions
- Mantle processes
- Ocean drilling
- Structure of the Earth
- Thermochronology
- Tsunamis
- Ultra-high pressure metamorphism
- Ultra-high temperature metamorphism

GEODESY and GRAVITY
- Acoustic-gravity waves
- Earth rotation variations
- Geodetic instrumentation
- Geopotential theory
- Global change from geodesy
- Gravity anomalies and Earth structure
- Loading of the Earth
- Lunar and planetary geodesy and gravity
- Plate motions
- Radar interferometry
- Reference systems
- Satellite geodesy
- Satellite gravity
- Sea level change

SEISMOLOGY
- Acoustic properties
- Body waves
- Coda waves
- Computational seismology
- Controlled source seismology
- Crustal imaging
- Earthquake dynamics
- Earthquake early warning
- Earthquake ground motions
- Earthquake hazards
- Earthquake interaction, forecasting, and prediction
- Earthquake monitoring and test-ban treaty verification
- Earthquake source observations
- Guided waves
- Induced seismicity
- Interface waves
- Palaeoseismology
- Rheology and friction of fault zones
- Rotational seismology
- Seismic anisotropy
- Seismic attenuation
- Seismic instruments
- Seismic interferometry
- Seismicity and tectonics
- Seismic noise
- Seismic tomography
- Site effects
- Statistical seismology
- Surface waves and free oscillations
- Theoretical seismology
Tsunami warning
Volcano seismology
Wave propagation
Wave scattering and diffraction

TECTONOPHYSICS
Backarc basin processes
Continental margins: convergent
Continental margins: divergent
Continental margins: transform
Continental neotectonics
Continental tectonics: compressional
Continental tectonics: extensional
Continental tectonics: strike-slip and transform
Cratons
Crustal structure
Diapirism
Dynamics: convection currents, and mantle plumes
Dynamics: gravity and tectonics
Dynamics: seismotectonics
Dynamics and mechanics of faulting
Dynamics of lithosphere and mantle
Folds and folding
Fractures, faults, and high strain deformation zones
Heat generation and transport
Hotspots
Impact phenomena
Intra-plate processes
Kinematics of crustal and mantle deformation
Large igneous provinces
Lithospheric flexure
Mechanics, theory, and modelling
Microstructures
Mid-ocean ridge processes
Neotectonics
Obduction tectonics
Oceanic hotspots and intraplate volcanism
Oceanic plateaus and microcontinents
Oceanic transform and fracture zone processes
Paleoseismology
Planetary tectonics
Rheology: crust and lithosphere
Rheology: mantle
Rheology and friction of fault zones
Sedimentary basin processes
Subduction zone processes
Submarine landslides
Submarine tectonics and volcanism
Tectonics and climatic interactions
Tectonics and landscape evolution
Transform faults
Volcanic arc processes

VOLCANOLOGY
Atmospheric effects (volcano)
Calderas
Effusive volcanism
Eruption mechanisms and flow emplacement
Experimental volcanism
Explosive volcanism
Lava rheology and morphology
Magma chamber processes
Magma genesis and partial melting
Magma migration and fragmentation
Mud volcanism
Physics and chemistry of magma bodies
Physics of magma and magma bodies
Planetary volcanism
Pluton emplacement
Remote sensing of volcanoes
Subaqueous volcanism
Tephrochronology
Volcanic gases
Volcanic hazards and risks
Volcaniclastic deposits
Volcano/climate interactions
Volcano monitoring
Volcano seismology

Key words

© 2017 RAS, GJI